1550 nm, 20 - 40 GHz, Picosecond Benchtop Fiber Laser

Applications

- Optical clock for 20, 40, 80, 320 GHz OTDM
- Spectral comb
- Transmission network characterization
- High speed O/E conversion
- Optical metrology
- Optical sampling

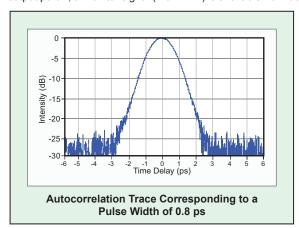
Features

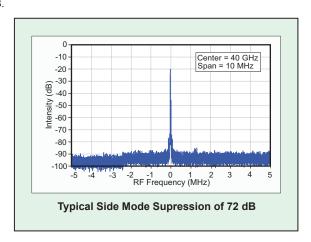
- Repetition rate tunable from 20 to 40 GHz
- Wavelength tunable from 1530 to 1565 nm
- Pulse width tunable from 0.8 to 5 ps
- Average output power > 20 mW
- Transform-limited output with low timing jitter
- Convenient fiber pigtail output
- Integral optical monitor port

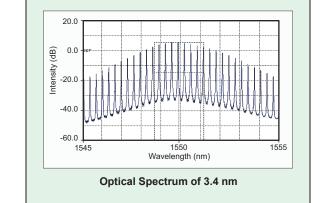
The benchtop Eureka (PSL-40) series is the perfect, picosecond pulse optical source for telecommunications test and measurement applications. Along with a portable design, the series offers user-friendly front panel control knobs for adjustment of the output power, wavelength, pulse width, and repetition rates. Different synchronization signals are available through a front panel RF output and an optical monitor port.

The C-band source is an actively mode-locked fiber laser with a continuously tunable repetition rate from 20 to 40 GHz that provides a stable and reliable optical clock with turnkey operation. It features a convenient fiber pigtail output with wavelength tunability throughout the C-band and power levels up to 20 mW. The pulse width can be varied from 0.8 to 5 ps with a pedestal of less -25 dB and a near transform-limited spectral width. The timing jitter is as low as 50 fs and the side mode suppression is better than -70 dB.

If the performance parameters do not quite fit your application requirements, please contact us at sales@calmarlaser.com to discuss a customized solution.


1550 nm, 20 - 40 GHz, Picosecond Benchtop Fiber Laser


Technical Specifications¹


Model Number	PSL-40-TT
OPTICAL	
Center Wavelength (nm)	1530 ~ 1565 (tunable)
Pulse Width ² (ps)	0.8 ~ 5 (tunable)
Average Power³ (mW)	> 20 at 40 GHz
Repitition Rate (GHz)	20 ~ 40 (tunable)
Pulse Amplitude Stability (%, RMS)	< 1.0
Polarization Extinction Ratio (dB)	> 18
Output/Termination	PM 1550 fiber pigtail with FC/APC connector, key to slow axis
ELECTRICAL	
RF Driver Source Input (V)	20 - 40 GHz, ~ 5 dBm
Supply Voltage (VAC)	85 - 264 autoranging
Supply Frequency (Hz)	47 - 63 autoranging
MECHANICAL	
Operating Temperature (°C)	15 - 30
Dimensions (cm)	48.2(W) x 46.7(D) x 10(H)
Weight (kg)	~ 7

^{1.} Due to our continuous improvement philosophy, all product specifications are subject to change without prior notice. Please contact sales@calmarlaser.com for customized specifications.

^{3.} From output port A, a monitor signal (~ 0.1 mW) is available from output port B.

^{2.} A sech² pulse shape (deconvolution factor of 0.65) is used to determine the pulse width from the second harmonic autocorrelation trace.